Extensions 1→N→G→Q→1 with N=C10 and Q=C25

Direct product G=N×Q with N=C10 and Q=C25
dρLabelID
C25×C10320C2^5xC10320,1640

Semidirect products G=N:Q with N=C10 and Q=C25
extensionφ:Q→Aut NdρLabelID
C10⋊C25 = D5×C25φ: C25/C24C2 ⊆ Aut C10160C10:C2^5320,1639

Non-split extensions G=N.Q with N=C10 and Q=C25
extensionφ:Q→Aut NdρLabelID
C10.1C25 = C23×Dic10φ: C25/C24C2 ⊆ Aut C10320C10.1C2^5320,1608
C10.2C25 = D5×C23×C4φ: C25/C24C2 ⊆ Aut C10160C10.2C2^5320,1609
C10.3C25 = C23×D20φ: C25/C24C2 ⊆ Aut C10160C10.3C2^5320,1610
C10.4C25 = C22×C4○D20φ: C25/C24C2 ⊆ Aut C10160C10.4C2^5320,1611
C10.5C25 = C22×D4×D5φ: C25/C24C2 ⊆ Aut C1080C10.5C2^5320,1612
C10.6C25 = C22×D42D5φ: C25/C24C2 ⊆ Aut C10160C10.6C2^5320,1613
C10.7C25 = C2×D46D10φ: C25/C24C2 ⊆ Aut C1080C10.7C2^5320,1614
C10.8C25 = C22×Q8×D5φ: C25/C24C2 ⊆ Aut C10160C10.8C2^5320,1615
C10.9C25 = C22×Q82D5φ: C25/C24C2 ⊆ Aut C10160C10.9C2^5320,1616
C10.10C25 = C2×Q8.10D10φ: C25/C24C2 ⊆ Aut C10160C10.10C2^5320,1617
C10.11C25 = C2×D5×C4○D4φ: C25/C24C2 ⊆ Aut C1080C10.11C2^5320,1618
C10.12C25 = C2×D48D10φ: C25/C24C2 ⊆ Aut C1080C10.12C2^5320,1619
C10.13C25 = C2×D4.10D10φ: C25/C24C2 ⊆ Aut C10160C10.13C2^5320,1620
C10.14C25 = C10.C25φ: C25/C24C2 ⊆ Aut C10804C10.14C2^5320,1621
C10.15C25 = D5×2+ 1+4φ: C25/C24C2 ⊆ Aut C10408+C10.15C2^5320,1622
C10.16C25 = D20.37C23φ: C25/C24C2 ⊆ Aut C10808-C10.16C2^5320,1623
C10.17C25 = D5×2- 1+4φ: C25/C24C2 ⊆ Aut C10808-C10.17C2^5320,1624
C10.18C25 = D20.39C23φ: C25/C24C2 ⊆ Aut C10808+C10.18C2^5320,1625
C10.19C25 = C24×Dic5φ: C25/C24C2 ⊆ Aut C10320C10.19C2^5320,1626
C10.20C25 = C23×C5⋊D4φ: C25/C24C2 ⊆ Aut C10160C10.20C2^5320,1627
C10.21C25 = D4×C22×C10central extension (φ=1)160C10.21C2^5320,1629
C10.22C25 = Q8×C22×C10central extension (φ=1)320C10.22C2^5320,1630
C10.23C25 = C4○D4×C2×C10central extension (φ=1)160C10.23C2^5320,1631
C10.24C25 = C10×2+ 1+4central extension (φ=1)80C10.24C2^5320,1632
C10.25C25 = C10×2- 1+4central extension (φ=1)160C10.25C2^5320,1633
C10.26C25 = C5×C2.C25central extension (φ=1)804C10.26C2^5320,1634

׿
×
𝔽